Crystal structure of the superfamily 1 helicase from Tomato mosaic virus.

نویسندگان

  • Masaki Nishikiori
  • Shigeru Sugiyama
  • Hongyu Xiang
  • Mayumi Niiyama
  • Kazuhiro Ishibashi
  • Tsuyoshi Inoue
  • Masayuki Ishikawa
  • Hiroyoshi Matsumura
  • Etsuko Katoh
چکیده

The genomes of the Tomato mosaic virus and many other plant and animal positive-strand RNA viruses of agronomic and medical importance encode superfamily 1 helicases. Although helicases play important roles in viral replication, the crystal structures of viral superfamily 1 helicases have not been determined. Here, we report the crystal structure of a fragment (S666 to Q1116) of the replication protein from Tomato mosaic virus. The structure reveals a novel N-terminal domain tightly associated with a helicase core. The helicase core contains two RecA-like α/β domains without any of the accessory domain insertions that are found in other superfamily 1 helicases. The N-terminal domain contains a flexible loop, a long α-helix, and an antiparallel six-stranded β-sheet. On the basis of the structure, we constructed deletion mutants of the S666-to-Q1116 fragment and performed split-ubiquitin-based interaction assays in Saccharomyces cerevisiae with TOM1 and ARL8, host proteins that are essential for tomato mosaic virus RNA replication. The results suggested that both TOM1 and ARL8 interact with the long α-helix in the N-terminal domain and that TOM1 also interacts with the helicase core. Prediction of secondary structures in other viral superfamily 1 helicases and comparison of those structures with the S666-to-Q1116 structure suggested that these helicases have a similar fold. Our results provide a structural basis of viral superfamily 1 helicases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallization and preliminary X-ray crystallographic analysis of the inhibitory domain of the tomato mosaic virus resistance protein Tm-1

Tm-1, an inhibitor protein of Tomato mosaic virus RNA replication, contains two conserved domains: an uncharacterized domain at its N-terminus and a TIM-barrel-like domain at its C-terminus. The N-terminal domain of Tm-1 has an inhibitory activity and its three-dimensional structure has not been determined. Here, the crystallization and preliminary X-ray diffraction of the N-terminal domain of ...

متن کامل

Characterization of Coat Protein Gene of Cucumber Mosaic Virus Isolates in Iran

Background: Cucumber mosaic virus (CMV) from the Bromoviridae family, is one of the most widespread plant viruses in the world. Objectives: In the present study tomato fields in Guilan, Isfahan, Khorasan Razavi, Khuzestan and Tehran provinces were surveyed to determine the presence of CMV subgroups during 2011-2012. Materials and Methods: Out of 305 symptomatic leaf samples ...

متن کامل

Association of Tomato Leaf Curl New Delhi Virus, Betasatellite, and Alphasatellite with Mosaic Disease of Spine Gourd (Momordica dioica Roxb. Willd) in India

Background: Spine gourd (Momordica dioica Roxb. Willd) is one of the important cucurbitaceous crops grown across the world for vegetable and medicinal purposes. Diseases caused by the DNA viruses are becoming the limiting factors for the production of spine gourd reducing its potential yield. For the commercial cultivation of the spine gourd, propagation material used by most o...

متن کامل

Light Diffraction of in vitro Crystals of Six Tobacco Mosaic Viruses

Tobacco Mosaic Viruses, Crystallization, Phase Transitions, Light Diffraction, Crystal Structure, Model Calculations Iridescent gels of the common, tomato mosaic, para-tobacco mosaic, ribgrass mosaic, sunnhemp mosaic, and cucumber 4 tobacco mosaic virus strains were prepared using the purification method of Boedtker and Simmons (J. Amer. Chem. Soc. 1958). Macrocrystals which were stable for man...

متن کامل

Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1.

The tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a protein that shows no sequence homology to functionally characterized proteins. Tm-1 binds ToMV replication proteins and thereby inhibits replication complex formation. ToMV mutants that overcome this resistance have amino acid substitutions in the helicase domain of the replication proteins (ToMV-Hel). A small region of Tm-1 in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 86 14  شماره 

صفحات  -

تاریخ انتشار 2012